SKILL #26

CODE: PN.3

Multiplying Polynomials

· Core Concept

When you multiply expressions, you're combining terms using the distributive property and exponent rules. You'll often apply these three main ideas:

- Multiply coefficients (the numbers).
- Apply laws of exponents (add powers of like bases). --> SKILL #27
- Use distribution to expand expressions.

Why It Matters

These skills help you solve equations, factor expressions, and understand patterns in math, science, and engineering.

GULDEN RULE

- Multiply coefficients (numbers) and add exponents for like variables
- Use the distributive property: a(b + c) = ab + ac
- Combine like terms at the end
- Recognize and use special product patterns 👉

Special Products:

Difference of Squares:

$$(a + b)(a - b) = a^2 - b^2$$

Perfect Square Trinomial:

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

Examples

Example 1: Multiplying Monomials

$$3x^2 \times 4x^3$$

STEP 1: Multiply coefficients --> $3 \times 4 = 12$

STEP 2: Apply lows of exponents to multiply x^2 and x^3 :

$$x^2 \cdot x^3 = x^{2+3} \rightarrow x^5$$

STEP 3: Combine --> $12x^5$

Example 3: Special Product—Difference of Squares

$$(x + 7)(x - 7)$$

Use the special product rule: --> $(x + 7)(x - 7) = x^2 - 49$

Example 2: Multiplying a Monomial by a Polynomial

$$2x \cdot (x^2 + 3x + 4)$$

Use the distributive property:

$$2x \cdot x^2 + 2x \cdot 3x + 2x \cdot 4 \rightarrow 2x^3 + 6x^2 + 8x$$

Example 4: Multiplying Two Binomials (FOIL)

$$(x+2)(x+5)$$

First
$$--> x \cdot x = x^2$$
 , Outer $--> x \cdot 5 = 5x$

Inner -->
$$2 \cdot x = 2x$$
, Last --> $2 \cdot 5 = 10$

Combine:
$$x^2 + 5x + 2x + 10 --> x^2 + 7x + 10$$

Common Mistakes to Avoid

- X Forgetting to multiply every term in one polynomial by every term in the other
- X Not combining like terms after multiplying
- X Mixing up signs (positive/negative)
- X Forgetting special product patterns

SKILL #27

CODE: EP.1

Laws of Exponents

Core Concept

An exponent tells you how many times to multiply a base number by itself.

The laws of exponents are rules that help you simplify expressions with exponents.

Example: $2^4 = 2 \times 2 \times 2 \times 2 = 16 --> 2^4 = 16$

Why It Matters

- Simplify complex algebraic expressions quickly
- Work with scientific notation
- Prepare for logarithms and advanced mathematics
- Solve equations involving powers efficiently

Key Laws of Exponents

- 1. Product Rule: $a^m \times a^n = a^{m+n}$
- 2. Quotient Rule: $a^m \div a^n = a^{m-n}$
- Power Rule: $(a^m)^n = a^{m \cdot n}$
- 4. Zero Exponent: $a^0 = 1$ ($a \neq 0$)
- 5. Negative Exponent: $a^{-n} = \frac{1}{a^n}$
- 6. Distribute Powers: $(ab)^n = a^n \cdot b^n$, $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Examples

- $x^3 \cdot x^5 --> x^{3+5} = x^8$ Example 1:
- Example 2: $\frac{x^3}{x^5}$ --> $x^{3-5} = x^{-2}$
- $(x^2)^3 --> x^{2\cdot 3} = x^6$ Example 3:
- $(9x)^0 --> 1$ Example 4:
- $\chi^{-3} > \frac{1}{r^3}$ Example 5:
- $(3x)^3 \longrightarrow 3^3 \cdot x^3 = 27x^3$ Example 6:

Extra Practice

Simplify: $(3x^2y)^3 \times (x^{-3}y^{-2})$

STEP 1: Use the Distribute Powers RULE

 $(3x^2y)^3 \rightarrow 3^3(x^2)^3(y^3) \longrightarrow 27x^6y^3$

STEP 2: Multiply and add exponents

$$27(x^6 \cdot x^{-3})(y^3 \cdot y^{-2}) = 27x^3y$$

Common Mistakes to Avoid

- \times Thinking 2⁴ = 2 × 4 (Nope! It's 2 × 2 × 2 × 2)
- X Forgetting that a zero exponent means 1
- XAdding exponents when multiplying different bases (Only works with the same base!)

Exponents are a shortcut for repeated multiplication.

The laws of exponents make it easy to work with big numbers and simplify expressions in algebra.

